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LE’ITER TO THE EDITOR 

Travelling kinks collision in Schlogl’s second model for 
non-equilibrium phase transitions 

T Dehrmann 
8524 Hetzles, Neunkirchner Str. 5, Federal Republic of Germany 

Received 18 June 1982 

Abstract. It is shown how to obtain an exact solution class of the nonlinear reaction 
diffusion equation in Schlogl’s second model. For large time these solutions evolve to 
bounded travelling kinks. When the phase coexistence conditions are satisfied, the sol- 
utions describe the collision of two travelling kinks. 

The considered system represents an autocatalytic chemical reaction model and was 
introduced by Schlogl (1972) as an example for a non-equilibrium phase transition. 
The system of reactions occurring in both directions is given by 

A+2X*3X (1) 

B+X*C (2) 

where the concentrations a, 6, c of the species A, B, C are held constant in space 
and time by adequate external feeding. For the species X the system is assumed to 
be closed, so that the time behaviour of the concentration n from the species X will 
be determined only by the dynamics of equations (1) and (2). 

There can exist two stable and one unstable steady states with homogeneous n. 
In analogy with a gas-fluid system the two stable states can be interpreted as two 
phases (Schlogl 1972). 

When diffusion of X in one direction z is included, the two spatially separated 
phases can coexist in the reaction system. By choosing appropriate units of time, 
length and concentration, the variable concentration n fulfils the semilinear parabolic 
equation 

an/at-Da2n/C3Z2=cp(n) (3) 
with the kinetic rate function 

q ( n )  = -n3  + 3an2 -pn  + y (4) 

where D is a diffusion constant and a, p, y are positive real control parameters related 
respectively to the concentrations of the species A, 8 and C. The factor 3 is introduced 
for convenience. 

This reaction diffusion system was studied by various authors in deterministic 
theory (Schlogl 1972, Schlogl and Berry 1980, Ebeling 1976, Ebeling and Malchow 
1979, Dung and Kozak 1981, Magyari 1982). Over the last few years semilinear 
parabolic equations of the general form of (3) have attracted mathematical interest 
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since they occur in a wide field of natural sciences (Fisher 1930, 1937, Gelfand 1959, 
1963, Livshits et a1 1981). Some authors have studied the existence and convergence 
of travelling wave fronts by mathematical analysis (Fife 1977, 1979, Fife and McLeod 
1977,1981, Rothe 1978, Hallam 1979, Uchiyama 1978, Paulwelussen 1981, Donnelly 
1980, Sperb 1981). 

The following procedure is not restricted to the Schlogl model with positive real 
quantities n, a, p, y because of the connection with chemical reactions. When p is 
below a critical value pc = 3a2 there exist three homogeneous steady states of (3) and 
cp(n) can be expressed as 

c p h )  = -(a - n d ( n  -n2)(n - n 3 )  

where n2 113 

to transform equations (3) and (4) by the substitutions (Schlogl and Berry 1980) 

v(2,  t )  = It (2,  t )  - f i  

where a is a real constant with -1 c a c +1. The transformed equation (3) can thus 
be written 

( 5 )  

When a =0, the phase coexistence conditions are satisfied and the two stable 
homogeneous steady states v* are v T  = +vo and v: = -vo. The unstable state is 
v $  = 0. In analogy with a gas-fluid system these conditions are fulfilled by a special 
value for the control parameter y in (4) obtained by the Maxwellian construction 
(Schlogl 1972) where the reaction rate function satisfies 

n~ are the real roots of q ( n )  = 0. For the following, it will be convenient 

1 
ti = $ ( n l + n z )  vo = dn2 - n 1) n3 = ti +you 

av/at  -Da2v/az2 = -(v - v ~ u ) ( v ~ -  U;) = cp(v). 

1"; dn q ( n )  = 0. (6) 

When a # 0, the integral (6) is not vanishing and y differs from the coexistence value. 
Now there exist only one stable and two unstable homogeneous steady states. 

Travelling wave solutions from ( 5 )  were recently written down for a # 0 by Schlogl 
and Berry (1980) and for a = 0 by Magyari (1982). Such solutions are of the form 

4 2 ,  t )  = d r l )  (7) 

where 77 = pr + qz with real constants p and 4. The substitution (7) transforms (5) into 
an ordinary differential equation for g(7) .  

We are looking for more general solutions of ( 5 )  fulfiIling the condition (7) only 
in the asymptotic case for large time t. For this purpose we introduce a continuous 
function CL (z, t )  with continuous first derivative for z ,  so that we can define the following 
relation between v(z, t )  and p ( z ,  t ) :  

(8) V(Z, t )  = (2D)"*(i/p(z, t ) )ap(z,  t)/az. 

The substitution (8)  transforms ( 5 )  into the partial differential equation for p ( z ,  t )  

Solutions from (9) can easily be gained when the expressions in the brackets vanish. 
Eliminating a2p/az8t  in the left-hand brackets by the derivation for z of the right-hand 



Letter to the Editor L65 1 

brackets, we find the linear system for p (z, t) 

2Da3p/az3 - v o ~ ( 2 ~ ) + 1 / 2 a 2 p / a ~ Z -  v:ap/a~ + v:~(2D)-"~p = o (io) 
ap/at - 30a2p/az2  + ~ ~ a ( 2 D ) + ~ / ~ a p / a :  = 0. (11) 

Equation (10) can be solved as an ordinary differential equation with time-dependent 
integration constants since the time t can be considered as a parameter. The ansatz 

p -e~p[r (2D)- ' /~z]  

leads to the characteristic equation of (10) which has the form of the kinetic rate 
function q ( r )  = 0 with the real roots rl = +YO, r 2  = -VO, r3 = avo. The general solution 
of (10) can then be written as 

(12) p ( z ,  t )  = t l ( t )  e'' +&(t) e-"' +C13(t) eau' 

where CY = vo(2D)-l/'. 

( l l ) ,  and we then obtain the general solution of the linear system (lo), (11) 
The time-dependent functions &(t )  can now be determined by substituting (12) in 

p ( z ,  t )  = (clu +cZu-l + c 3 v )  exp(zv3) 

where c1, c 2 ,  c3  are real integration constants and U and U are abbreviations defined 
by 

U =exp[4v~(a2-3)t+acrz]. 2 U = exp(-voat +CYZ) 

With the relation (8), the solution of ( 5 )  yields finally 

v(2,  t )  = vo(c1u -c*u-l + U C , U ) / ( C l U  + c z U - ' + c 3 U ) .  (13) 

The constants ci  define various solution classes of ( 5 ) .  The homogeneous steady v* 
are obtained when two of the constants vanish: 

v* YOU for c1 = c2 = 0 

y *  = - v0 for c1 = c 3  = 0 

v* = +vo for c2  = c3 = 0. 

Travelling kinks J, v(+), v(-) are obtained when only one constant vanishes: 

J(z ,  t )  = vo tanh(ar - v:at + zo) for c3 = 0 (14) 
and v(+) for c2 = 0 and v(-) for c1 = 0 where 

v o a * t o ( l ~ a ) ( l + e x p [ ~ v ~ ( a * 3 ) ( u  TI)~+CY(U TI)Z+Z~]) - ' .  (15) v(+) = 

With non-vanishing constants ci the solution (13) evolves for large time t to the 
travelling kinks J(z, t)  of (14). This is also valid in the coexistence case for a = 0. J 
becomes the inhomogeneous stationary coexistence solution of (4). Then the initial 
value v(z, t = 0) of (13) can be expressed as the sum of the initial values of v(+) and 
v(-) given by (15), 

v(2,  f = 0)  = v(+)(z ,  t = 0)  + P ( 2 ,  c = 0)  (for a = 0), 

so that the solution (13) describes the collision of the travelling kinks v(+) and v(-). 
The aim in this work was to gain a more general solution than the travelling wave 

fronts in the reaction diffusion system of Schlogl's second model for a non-equilibrium 
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phase transition. The substitution (8) transforms the parabolic equation with cubic 
nonlinearity into a form offering access to the searched-for solution. One can easily 
see that the same method is applicable for systems with spherical or cylindrical 
symmetry. 
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